66 research outputs found

    Integrating Airborne Laser Scanning and 3D Ground-Penetrating Radar for the Investigation of Protohistoric Structures in Croatian Istria

    Get PDF
    We present the investigation of two rather ephemeral archaeological sites located in the municipality of Oprtalj/Portole (Croatian Istria) by means of integrated archaeological, geophysical and remote sensing techniques. The results obtained confirm the first interpretation of these contexts; a protohistoric burial mound and a small hillfort, respectively. We further obtained detailed information about both deposits through 2D and 3D remote sensing and geophysical studies that produced maps, volumes, profiles and cross-sections. At the first site, the volume reconstruction of both the inner stone core and the superimposed earth of the putative stone mound also allowed us to estimate the labour necessary to erect the structure. In conclusion, our study demonstrates that the integrated approach can be valuable not only to acquire novel data about the archaeological deposits but also to calibrate future investigations and to plan effective measures for heritage management, monitoring and valorization

    Non-invasive methodological approach to detect and characterize high-risk sinkholes in urban cover evaporite karst: Integrated reflection seismics, PS-INSAR, leveling, 3D-GPR and ancillary data. a Ne Italian case study

    Get PDF
    Sinkholes linked to cover evaporite karst in urban environments still represent a challenge in terms of their clear identification and mapping considering the rehash and man-made structures. In the present research, we have proposed and tested a methodology to identify the subsiding features through an integrated and non-invasive multi-scale approach combining seismic reflection, PS-InSAR (PSI), leveling and full 3D Ground Penetrating Radar (GPR), and thus overpassing the limits of each method. The analysis was conducted in a small village in the Alta Val Tagliamento Valley (Friuli Venezia Giulia region, NE Italy). Here, sinkholes have been reported for a long time as well as the hazards linked to their presence. Within past years, several houses have been demolished and at present many of them are damaged. The PSI investigation allowed the identification of an area with higher vertical velocities; seismic reflection imagined the covered karst bedrock, identifying three depocenters; leveling data presented a downward displacement comparable with PSI results; 3D GPR, applied here for the first time in the study and characterization of sinkholes, defined shallow sinking features. Combining all the obtained results with accurate field observations, we identified and mapped the highest vulnerable zone

    Assessing the positional accuracy of perceptual landscape data: A study from Friuli Venezia Giulia, Italy

    Get PDF
    Online GIS-based applications that combine mapping and public participation to collect citizens' voices on their surrounding environment are a way to collect original spatial data that do not already figure in authoritative data sets. However, these applications, relying on non-expert users, might produce spatial data of insufficient quality for the purpose for which they are collected. This article presents an approach for assessing the positional accuracy of vague landscape features, using the results from a map-based survey completed by a group of volunteers in the Friuli Venezia Giulia region of Italy. The spatial section of the survey, gathering both georeferenced data and textual information on the mapping activity, allows the assessment of whether there is a correspondence between the mapped features and the intended map locations. The findings reveal a greater accuracy among participants in completing the mapping activity relating to degraded sites than to those of beauty

    The TESS-Keck Survey: Science Goals and Target Selection

    Full text link
    Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here we introduce the TESS-Keck Survey (TKS), an RV program using ~100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully-automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K < Teff < 6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets (Rp < 4 Re), 11 systems with multiple transiting candidates, 6 sub-day period planets and 3 planets that are in or near the habitable zone of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available (at https://github.com/ashleychontos/sort-a-survey) and can be adapted for any survey which requires a balance of multiple science interests within a given telescope allocation.Comment: 23 pages, 10 figures, 5 table

    TESS Reveals a Short-period Sub-Neptune Sibling (HD 86226c) to a Known Long-period Giant Planet

    Get PDF
    The Transiting Exoplanet Survey Satellite mission was designed to find transiting planets around bright, nearby stars. Here, we present the detection and mass measurement of a small, short-period (≈4 days) transiting planet around the bright (V = 7.9), solar-type star HD 86226 (TOI-652, TIC 22221375), previously known to host a long-period (~1600 days) giant planet. HD 86226c (TOI-652.01) has a radius of 2.16 ± 0.08 R⊕ and a mass of 7.25−1.12+1.19{7.25}_{-1.12}^{+1.19} M⊕, based on archival and new radial velocity data. We also update the parameters of the longer-period, not-known-to-transit planet, and find it to be less eccentric and less massive than previously reported. The density of the transiting planet is 3.97 g cm−3, which is low enough to suggest that the planet has at least a small volatile envelope, but the mass fractions of rock, iron, and water are not well-constrained. Given the host star brightness, planet period, and location of the planet near both the "radius gap" and the "hot Neptune desert," HD 86226c is an interesting candidate for transmission spectroscopy to further refine its composition

    TESS Reveals HD 118203 b to be a Transiting Planet

    Get PDF
    The exoplanet HD 118203 b, orbiting a bright (V = 8.05) host star, was discovered using the radial velocity method by da Silva et al., but was not previously known to transit. Transiting Exoplanet Survey Satellite (TESS) photometry has revealed that this planet transits its host star. Nine planetary transits were observed by TESS, allowing us to measure the radius of the planet to be 1.136^(+0.029)_(-0.028) R_J, and to calculate the planet mass to be 2.166^(+0.074)_(-0.079) M_J. The host star is slightly evolved with an effective temperature of T_(eff) = 5683^(+84)_(-85) K and a surface gravity of log g = 3.889^(+0.017)_(-0.018). With an orbital period of 6.134985^(+0.000029_(-0.000030) days and an eccentricity of 0.314 ± 0.017, the planet occupies a transitional regime between circularized hot Jupiters and more dynamically active planets at longer orbital periods. The host star is among the 10 brightest known to have transiting giant planets, providing opportunities for both planetary atmospheric and asteroseismic studies

    IGAPS: the merged IPHAS and UVEX optical surveys of the Northern Galactic Plane

    Get PDF
    The INT Galactic Plane Survey (IGAPS) is the merger of the optical photometric surveys, IPHAS and UVEX, based on data from the Isaac Newton Telescope (INT) obtained between 2003 and 2018. Here, we present the IGAPS point source catalogue. It contains 295.4 million rows providing photometry in the filters, i, r, narrow-band Hα, g, and U_(RGO). The IGAPS footprint fills the Galactic coordinate range, |b| 5σ confidence)
    • 

    corecore